Chlorination and Oxidation of Aromatic Polyamides. I. Synthesis and Characterization of Some Aromatic Polyamides

SHAOYU WU,^{1,*} GUODONG ZHENG,¹ HUIQIN LIAN,¹ JING XING,¹ and LIANFANG SHEN²

¹Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 and ²State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan, 430071, People's Republic of China

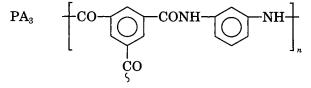
SYNOPSIS

The synthesis is described of some aromatic polyamides based on unsubstituted, and methyl-, carboxy-, and sulfo-substituted diamines by interfacial polycondensation. Some of them are crosslinked and some of them contain heterocyclic aromatic rings. Their chemical structures are characterized by IR and ¹³C solid-state NMR spectra and the spectra are interpreted. © 1996 John Wiley & Sons, Inc.

INTRODUCTION

Aromatic polyamides possess suitable high performance for reverse osmosis membranes used for seawater desalination and ultrapure water preparation.¹ Since the DuPont company determined that polyamides (PAs) were the most suitable materials for reverse osmosis membranes, many studies on them have been reported,² especially since Cadotte et al. of Filmtec prepared outstanding performance composite membranes by an in situ interfacial polymerization reaction on the surface of a porous polysulfone substrate.³ PA thin film composite membranes, such as FT-30 from Filmtec, A-15 from Dupont, and the UTC series from Toray,⁴ have achieved a major position in the market of reverse osmosis membranes. Their ultrathin active layers are all PAs made by interfacial polycondensation. In this study some aromatic PAs for composite reverse osmosis membranes were synthesized by interfacial polycondensation, some of them containing special substituents or heterocyclic aromatic rings and some of them crosslinked. Their chemical structures were characterized by IR and ¹³C solidstate NMR spectra.

EXPERIMENTAL

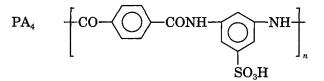

Synthesis of PAs

All PAs were prepared by the interfacial polycondensation method developed by Morgan.⁵ Their structures are as follows:

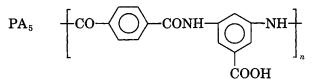
$$PA_1 = \begin{bmatrix} CO & O & O \\ O & O & O \\ \end{bmatrix}_n$$

poly(-1, 3-phenylene isophthalamide)

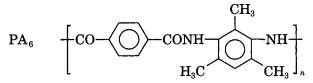
poly(-1, 3-phenylene terephthalamide)

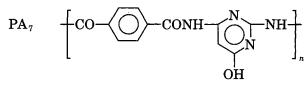


poly(-1, 3-phenylene trimesoylamide)

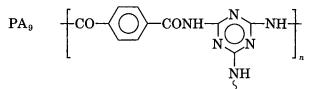

^{*} To whom correspondence should be addressed.

Journal of Applied Polymer Science, Vol. 61, 415-420 (1996)


^{© 1996} John Wiley & Sons, Inc. CCC 0021-8995/96/030415-06


poly(-sulfo-3, 5-phenylene terephthalamide)


poly(-carboxy-3, 5-phenylene terephthalamide)


poly(-2, 4, 6-trimethyl-1, 3-phenylene terephthalamide)

poly(-4-hydroxy-2, 4-pyrimididylidene terephthalamide)

poly(-2, 4, 6-pyrimididylidene terephthalamide)

poly(-2, 4, 6-1, 3, 5-triazolylidene terephthalamide)

Table I Conditions of Interfacial Polycondensation of Polyamides (PAs)

	1	-		
РА	Aqueous	Organic	T (min)	$\eta_{ m inh} \ (m dL/g)$
\mathbf{PA}_1	5 mmol diamine	5 mmol acid chloride		
-	100 mL water 0.05 mol NaOH	100 mL hexane	10	1.02
PA_2		Same as PA ₁	10	1.23
PA ₃	7 mmol diamine 100 mL water 0.05 mol NaOH	5 mmol acid chloride 100 mL hexane	10	
PA ₄	5 mmol diamine 80 mL water 10 mL acetone 0.05 mol NaOH	5 mmol acid chloride 50 mL hexane	30	0.45
PA ₅	5 mmol diamine 80 mL water 20 mL THF 0.05 mol NaOH	5 mmol acid chloride 50 mL hexane	30	0.51
PA ₆		Same as \mathbf{PA}_4	30	0.48
PA ₇	5 mmol diamine 100 mL water 20 mL THF 0.05 mol NaOH	7 mmol acid chloride 50 mL hexane 10 mL THF	30	0.38
PA ₈	5 mmol triamine	Same as PA ₆	30	
PA ₉	10 mmol triamine TMAHDB	10 mmol acid chloride	15	

T, reaction time; TMAHDB, trimethylamine hexadecane bromide. Reaction temperature was 20°C.

Frequency (cm ⁻¹)						
PA ₁	PA ₂	PA ₃	Assignment			
3430	3421	3424	N—H stretching (free)			
	3312		N-H stretching (H-bonded)			
3066	3062	3070	Aromatic $C - H$ stretching			
1652	1646	1668	Amide I			
1608	1607	1609	C = C ring stretching			
1540	1538	1541	Amide II			
1487	1486	1488	C=C ring stretching			
1441		1445	C = C ring stretching			
1416	1420	1419	Aromatic C N stretching			
1249	1281	1246	Interaction of N—H bending and C—N stretching (amide II)			
783	782	779	Out of plane bending of C—H bonds of aromatic rings			
716	720	731	Out of plane of amide I			
688	683	674	Deformation of N-H			
584	592	576	C=O out of plane			

Table IIIR Spectral Data of Some Polyamides (PAs) Not ContainingSubstituent Groups in Diaminobenzene

Table IIIIR Spectral Data of Polyamides (PAs) Containing SubstituentGroups

	Frequency (cm ⁻¹)					
PA ₄	PA ₅	PA ₆	Assignment			
3456		3418	N-H stretching (free)			
3330	3385	3324	N—H stretching (H-bonded)			
3064	3063	3063	Aromatic $C - H$ stretching			
		2924	$C - H$ stretching in CH_3			
	1791		C = O stretching in COOH			
1687	1686	1645	Amide I			
1570	1609	1572	C = C stretching			
1530	1554	1524	Amide II			
1505		1490	C = C stretching			
1423	1426	1426	Aromatic $C - N$ stretching			
1296	1287	1285	Amide II			
1233			$S = O$ stretching in SO_3H			
1025	1017		1, 3, 5-substituted in aromatic rings			
778	775	781	Out of plane bending of C-H bonds of aromatic rings			
731	731	731	Out of plane of amide I			
634	657	687	Deformation of N—H			
582	567	564	Out of plane of $C=0$			

		Frequency (cm ⁻¹)		
Assignment	PA ₉	PA ₈	PA ₇	
H stretching	3474		3423	
H stretching (H-bonded)		3337		
H stretching in benzene	3009	3089	3067	
le I	1685	1695	1690	
breathing of heterocyclic ring	1645	1663		
C stretching in benzene	1610	1607	1608	
e II	1511	1512	1508	
N stretching	1466	1458	1424	
le II	1286	1294	1286	
breathing of heterocyclic ring	1209	1198	1202	
of plane bending C—H bonds benzene	792	827	780	
of plane N—H bending	733	724	732	
mation of N—H	640	646	699	
O out of plane	571	541	565	

Table IV IR Spectral Data of Polyamides (PAs) Containing Heterocyclic Rings

Table V Chemical Shifts and Assignments of ¹⁸C Solid-State NMR

Structure of PA	<u> </u>	Che	mical Sł	nift and A	ssignmei	nt		
$CO - \underbrace{\bigcirc}_{7}^{6} \overset{2}{\underset{1}{2}} CONH - \underbrace{\bigcirc}_{8}^{5} \overset{5}{\underset{9}{9}} NH$	Chemical shift Assignment	165 C ₁	136 C ₂	129 C _{3,4,9}	126 C ₇	120 C ₆	116 C ₈	112 C ₅
$CO - \underbrace{\bigcirc}_{4}^{2} - \underbrace{CONH}_{3} \underbrace{\bigcirc}_{6}^{5} - NH$	Chemical shift Assignment	165 C ₁	136 C ₂	132 C ₃	127 C _{4,7}		118 C _{5,6}	
$\begin{array}{c} CO - \overbrace{\bigcirc}{4} 2 CONH - \overbrace{3}{6} \overbrace{\bigcirc}{7} - NH \\ CO - \overbrace{\bigcirc}{1} 3 \overbrace{6} \overbrace{7}{7} - NH \end{array}$	Chemical shift Assignment	165 C ₁	136 C ₂	130 C ₄	123 C ₇	119 C ₃	116 C _{5,6}	
$CO - \underbrace{\bigcirc_{2}}_{6} - \underbrace{CONH^{3}}_{5} \underbrace{\bigcirc_{7}}_{7} - NH$ $SO_{3}H$	Chemical shift Assignment	165 C ₁	140 C ₄	136 C ₂	130 C _{3.6}	123 C ₇	$\begin{array}{c} 118 \\ \mathrm{C}_5 \end{array}$	
$CO - \underbrace{\bigcirc_{2}}_{6} - \underbrace{CONH}_{3} \underbrace{\bigcirc_{7}}_{7} - NH$ $CO - \underbrace{\bigcirc_{6}}_{1} - \underbrace{OOH}_{5} \underbrace{\bigcirc_{7}}_{7} - OOH$	Chemical shift Assignment	165 C ₁	138 C _{3,4}	135 C ₂	130 C _{6.7}	116 C ₅		
$\begin{array}{c} \text{CO} - \overbrace{\bigcirc}_{4}^{3} - \overbrace{1}^{\text{CONH}} \overbrace{5}^{2} \overbrace{6}^{N} \underset{OH}{\overset{O}} \overset{N}{\overset{N}} \xrightarrow{NH} \end{array}$	Chemical shift Assignment	166 C ₁	137 C _{2,3}	129 C ₄	117 C _{5,6}			

The conditions of polymerization are summarized in Table I.

All PAs were washed with an aqueous solution of HCl, distilled water, and acetone successively, then dried under vacuum at 60°C for 24 h. The inherent viscosity was determined on a 0.5 g/dL solution in concentrated sulfuric acid at 20°C.

IR Spectroscopy

The IR spectra were recorded on a U.S. Digilab FT 20E IR spectrometer. The samples were made by the KBr pellet technique.

¹³C Solid-State NMR Spectroscopy

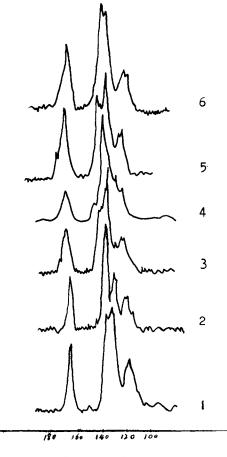
¹³C solid-state NMR spectra were obtained using a Swiss Bruker MSL-400-PFT-NMR spectrometer.

RESULTS AND DISCUSSION

IR Spectra

A summary of appropriate frequency assignments of those PAs not containing substituents in the diaminobenzene is presented in Table II.

PA1-PA3 exhibit strong absorption bands between 3421 and 3430 $\rm cm^{-1}$ attributed to the N — H stretching vibrations. PA₂ exhibits an H-bonded N — H stretching vibration at 3312 cm^{-1} . The band between 3062 and 3078 cm^{-1} , which corresponds to the C-H stretching vibration, characterizes an aromatic system. Amide I from the C = O stretching vibration, which is located in the area between 1646 and 1668 cm^{-1} , is the typical absorption band of amide.⁶ Amide II, from the coupling of N — H bending and C - N stretching of C - N - H groups, is located near 1540 cm^{-1} , between 1216 and 1281 cm^{-1} , and is the typical absorption band of amide too. The three strong absorptions near 1608, 1487, and 1441 cm^{-1} are assigned to C==C stretching vibration in the benzene structure. Other corresponding absorption bands are shown in Table II.


It is interesting to note that only PA2 in this group shows a strong H-bonded N-H stretching peak at 3312 cm⁻¹, which may result from its symmetrical structure from the acid chloride.

We find from Table II that the effect of structure on vibration frequencies of amide I is obvious. **PA₂**, because of its resonance effect, shows the lowest frequencies for the absorption band of all the PAs studied. The IR spectral data of PAs that contain some special substituents are given in Table III.

Apart from the same assignments as PA_1-PA_3 , PA_4-PA_6 show special absorption bands, for example, the 1233 cm⁻¹ is the S=O stretching vibration frequency of SO₃H in PA₄. PA₅ exhibits a strong absorption band at 1791 cm⁻¹, which results from C=O stretching in COOH; and 2924 cm⁻¹ is assigned to C—H stretching in —CH₃.⁷ Another obvious difference is that PA₄-PA₆ exhibit special absorption bands owing to the effect of multisubstitution on benzene: 1025 and 1017 cm⁻¹ of PA₄ and PA₅ are the typical absorption frequencies of 1,3,5-substituted benzene.⁷

The IR spectral data of PAs that contain heterocyclic aromatic rings are presented in Table IV.

Besides typical absorption bands of amide and benzene, PA_7-PA_9 exhibit some special bands that

Chemical shift (ppm)

Figure 1 Spectra of ¹³C solid-state NMR of polyamides: (1) PA_1 , (2) PA_2 , (3) PA_3 , (4) PA_4 , (5) PA_5 , and (6) PA_7 .

relate to heterocyclic aromatic rings, such as the heterocyclic aromatic ring breathing bands located near 1650 and 1200 $\rm cm^{-1.8}$

¹³C Solid-State NMR Spectra

High-resolution ¹³C solid-state NMR was a useful tool for examination of molecular structure in the solid state for the past decade.⁹ This tool was used for this study to characterize the chemical structure of PAs. Relevant data and spectra are presented in Table V and Figure 1.¹⁰

From Table V and Figure 1 we find that the chemical shift of the carbon of C = O is in the lowest field in every PA and is not affected by different structures. Some of the C bands are difficult to resolve because of their proximate chemical shifts.

This work was financially supported by the National Natural Science Foundation of China (NNSFC).

REFERENCES

- 1. R. J. Petersen, J. Membr. Sci., 83, 81 (1993).
- 2. S. D. Arthur, J. Membr. Sci., 46, 243 (1989).
- 3. J. E. Cadotte, R. S. King, R. J. Majerle, and R. J. Petersen, J. Macro. Sci.-Chem., A15, 727 (1981).
- R. J. Petersen and J. E. Cadotte, in M. E. Poter, Ed., Handbook of Industry Membrane Technology, Noyes Publications, Park Ridge, NJ 1990 p. 307.
- 5. P. W. Morgan, *Condensation Polymers*, Plenum, New York, 1965.
- Y. P. Khanna and E. M. Pearce, J. Polym. Sci., Polym. Chem. Ed., 19, 2799 (1981).
- 7. L. J. Bellamy, *The Infra-Red Spectra of Complex Molecules*, Chapman & Hall, London, 1978.
- 8. Tanner, Spectrochim. Acta, 8, 9 (1956).
- J. Schaefer and E. O. Stejeskel, J. Am. Chem. Soc., 98, 1031 (1976).
- J. L. Nieto, J. G. de la Campa, and J. der Abajo, *Macromol Chem.*, **183**, 557 (1982).

Received January 31, 1995 Accepted December 7, 1995